Errata, Mahler Study Aids for MAS2, 2022 HCM, 6/6/22 Page 1

In June 2022, the CAS announced that effective with the Fall 2022 exam sittings, the guessing penalty for exams MAS-I and MAS-II will be eliminated. **Therefore, you should make sure to choose a letter response for every question.**

Read the portion of my second study guide on Bayes Analysis prior to the McElreath textbook.

1, page 6:

1 - Z is sometimes referred to as the "complement of credibility".

Confusingly, often instead what I have denoted Y, the item that is given weight 1 - Z, is referred to as the "complement of credibility".

Tse in <u>Nonlife Actuarial Models: Theory Methods and Evaluation</u> does not use the term "complement of credibility". Weight 1 - Z is given to M = manual rate.

2, page 208, last line: = 0.4259.

2, solution 6.3: $(24)(1/\omega)(1/\omega)(1/\omega)(1/\omega) = 24/\omega^4$. Final solution is okay.

2, page 306, 5th line from the bottom: (300)²(0.21)

3, solution 5.1: $f(x) = \{(a+b-1)! / (a-1)! (b-1)!\} (x/\theta)^{a-1} \{1 - (x/\theta)\}^{b-1} / \theta =$

3, Q. 6.45: a Beta Distribution with $\theta = 1$

3, solution 7.46: a' = a + # successes = 9 + 15 = 24, and b' = b + # failures = 5 + 25 = 30. Posterior mean is: a' / (a' + b') = 24 / (24 + 30) = 0.444.

3, Q. 13.12: What is the posterior density function for the parameter $\boldsymbol{\theta}$ for this insured?

3, Solution: 13.28: Thus at x = 1, 8, 27, 125, the densities are proportional to: $\beta^{-1/3} \exp(-\beta^{-1/3})$, $\beta^{-1/3} \exp(-2\beta^{-1/3})$, $\beta^{-1/3} \exp(-3\beta^{-1/3})$, and $\beta^{-1/3} \exp(-5\beta^{-1/3})$.

3, page 275, solutions 8.16 and 8.17 are missing:

8.16. E. A Gamma-Exponential with prior Gamma with $\alpha = 1$ and $\theta = 1/100$. Thus the posterior Gamma has parameters $\alpha = 1 + 2 = 3$, and $1/\theta = 100 + 40 + 80 = 220$. $E[1/\lambda] =$ negative first moment of the posterior Gamma = 220/(3-1) = 110. Alternately, the posterior distribution is proportional to: $e^{-100\lambda}\lambda e^{-40\lambda} \lambda e^{-80\lambda} = \lambda^2 e^{-220\lambda}$. $E[X \mid \lambda] = 1/\lambda$. Therefore, the expected size of the next claim is:

$$\frac{\int\limits_{0}^{\infty} (1/\lambda) \lambda^2 e^{220\lambda} d\lambda}{\int\limits_{0}^{\infty} \lambda^2 e^{220\lambda} d\lambda} = \frac{220^2 \Gamma(2)}{220^3 \Gamma(3)} = 220/2 = 110.$$

<u>Comment</u>: Since $\alpha = 1 \le 2$, one can not apply Buhlmann Credibility. The posterior mixed distribution is Pareto with $\alpha = 3$ and $\theta = 220$, with mean 220/(3-1) = 110.

8.17. D. A Gamma-Exponential.

Thus the posterior Gamma has parameters $\alpha = 4 + 3 = 7$, and $1/\theta = 1000 + 100 + 200 + 500 = 1800$. $E[1/\lambda] =$ negative first moment of the posterior Gamma = 1800/(7-1) = 300. Alternately, $K = \alpha - 1 = 4 - 1 = 3$. Z = (3/(3+K) = 3/(3+3) = 50%. The prior mean is the negative first moment of the prior Gamma = 1000/(4-1) = 1000/3. Estimate of the future severity is: (50%)(800/3) + (50%)(1000/3) = 300. Comment: The posterior mixed distribution is Pareto with $\alpha = 7$ and $\theta = 1800$, with mean 1800/(7-1) = 300. **4**, solution 4.39: Z = **150**/(**150**+0.986) = 0.9935.

Estimated future pure premium is: (0.9935)(3130.20) + (1 - 0.9935)(2783.49) = 3128. Estimated aggregate claim amount for the next period: (3128)(175) = 547,400.

5, Q. 2.10: Model III: K-Nearest Neighbors with K = 5.

5, page 88, third paragraph from the bottom: Thus the **Gini Index** for a region is: (2)(proportion of yeses)(proportion of nos).

5, Q.4.3: For observation 6, LoyalCH = 0.695. (For given LoyalCH = 0.795, the prediction would be CH.)

5, solution. 8.16: Final solution is okay.

 Z_1 and Z_3 are uncorrelated. It turns out that constraining Z_3 to be uncorrelated with Z_1 is equivalent to constraining the direction ϕ_3 to be orthogonal (perpendicular)

to the direction ϕ_1 . Thus, $\sum_{j=1}^5 \phi_{j1} \phi_{j3} = 0$. Thus Statement III is true.

<u>Comment</u>: $Z_{\underline{1}}$, $Z_{\underline{2}}$, and $Z_{\underline{3}}$ are each orthogonal to the others.

5, Q. 10.13: $x_1 = (-1, 0) \quad x_3 = (2, -1),$

5, Solution 10.1: {56} is 21 from {7**7**} Then on the second page of the solution. {23, 39} is {(56 - 23) + (56 - 39) + (77 - 23) + (77 - 39)}/4 = 35.5 away from {56, 7**7**}. Final solution is okay.