Rewrite Exam 1, question 11: One has fit a regression model with 6 variables (5 independent variables plus the intercept), to 18 observations.

One is testing the hypothesis H0: $\beta_2 = \beta_3 = \beta_4 = \beta_5 = \beta_6 = 0$,

versus the alternative hypothesis that H0 is false.

TSS is the total sum of squares.

RSS is the residual (error) sum of squares.

What is the critical region for a test at a 1% significance level?

A. TSS \ge 3.1 RSS B. TSS \ge 3.2 RSS C. TSS \ge 3.3 RSS D. TSS \ge 3.4 RSS E. TSS \ge 3.5 RSS Solution to the revised question at the end of the errata.

Exam 1, solution 9: $Var[\hat{\beta}_0] = 0.0431$. Final answer is okay.

Exam 2, question 18: the rth value from smallest to largest is:

Exam 2, solution 38: The final balance equation should be: $0.1\pi_1 + 0.2\pi_2 + 0.5\pi_3 = \pi_3$.

The final solution is okay.

Exam 2, solution 42: $14S_1^2/\sigma_1^2$ is Chi-Square with 14 degrees of freedom.

Exam 3, solution 1: those with x values closest to x₀ get more weight

Exam 3, solution 15: $(y_t - y_{t-1}) = 0.3 (y_{t-1} - y_{t-2}) - 0.5 (y_{t-2} - y_{t-3}) + w_t + 0.4 w_{t-1} + 0.2 w_{t-2}$. Final answer is okay.

Exam 4, solution 11: The smoothed density at 70 is:

Exam 4, solution 35: The main limitation of GAMs is that the model is restricted to be additive. However, we can add interaction terms by including additional predictors such as $X_i X_k$.

In addition we could add low-dimensional interaction functions of the form $f_{jk}(X_j, X_k)$ into the model.

Thus while "GAMs allow one to include interaction terms." is not a listed advantage of GAMs, the question would be much better without the given choice D. I will change the question to:

D. The smoothness of each function on a predictor can be summarized via degrees of freedom.

E. All of the above are advantages of GAMs.

Exam 6, Q. 24: You are given a sample of size four: 11, 12, 12, 16.

Exam 6, sol. 28-30: In the table the total degrees of freedom should be (3)(4)(2) = 24

Exam 6, sol. 37: Final answer is okay.

The squared error is: $\sum (y_i - \beta_0 - \beta_1 x_i - \beta_2 x_i^2)^2$.

$$0 = \frac{\partial \text{ squared error}}{\partial \beta_0} = \sum -2 (y_i - \beta_0 - \beta_1 x_i - \beta_2 x_i^2).$$

$$0 = \frac{\partial \text{ squared error}}{\partial \beta_1} = \sum -2 x_i (y_i - \beta_0 - \beta_1 x_i - \beta_2 x_i^2).$$

$$0 = \frac{\partial \text{ squared error}}{\partial \beta_2} = \sum -2 x_i^2 (y_i - \beta_0 - \beta_1 x_i - \beta_2 x_i^2).$$

Exam 7, sol. 35, in the Comment: if each component follows an Exponential distribution

Exam 8, Q. 36 A. $x_t = w_t - 0.8w_{t-1} + 0.6w_{t-2}$ and $y_t = 0.8y_{t-1} + w_t$ B. $x_t = w_t - 0.8w_{t-1} + 0.6w_{t-2}$ and $y_t = -0.8y_{t-1} + w_t$ C. $x_t = w_t - 0.8w_{t-1} + 0.6w_{t-2} - 0.4w_{t-3}$ and $y_t = 0.8y_{t-1} + w_t$ D. $x_t = w_t - 0.8w_{t-1} + 0.6w_{t-2} - 0.4w_{t-3}$ and $y_t = -0.8y_{t-1} + w_t$

Exam 8, sol. 12, next to last line: ${}_{3}\mathbf{p}_{70}$ Final solution is okay.

Exam #9, sol. 7: $\theta = 1/\lambda = 1/(1/2) = 2$.

Exam #9, sol. 26: 1 + 5 + 4 + 3 + 2 + 1 = **16** models. Statement III is false.

Exam #12, sol. 21: Applying this with k = -3 and τ = 3: E[1/X³] = $\theta^{-3} \Gamma$ [1 - (-3)/3]

Exam #13, sol. 24: Prob[category is j or less] = $\frac{\exp[\beta_{0j} + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3]}{1 + \exp[\beta_{0j} + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3]}.$

Final solution is okay.

Solution to rewritten Exam 1, question 11:

11. A. Compute F-Statistic = $\frac{(TSS - RSS) / (k-1)}{RSS / (N - k)} = \frac{(TSS - RSS) / (6-1)}{RSS / (18 - 6)}$

= 2.4 (TSS - RSS) / RSS.

F has k - 1 = 5, and N - 5 = 12 degrees of freedom, and the 1% critical value is 5.06.

Critical region is when we reject H₀, which is when $F \ge 5.06$. \Rightarrow

2.4 (TSS - RSS) / RSS \geq 5.06. \Rightarrow **TSS \geq 3.11 RSS**.