P. 12 The 1940 NCCI Multi-Split Plan:

Each loss was divided into \$500 increments.

The first increment was considered all primary.

The second increment was considered 2/3 primary.

The third increment was considered $(2/3)^2$ primary, etc.

P. 29, Sol. 1.19: Letting E be the size, this becomes: $\Delta(Z/E) / \Delta E$ should be **negative**. f₂ does satisfy the third requirement.

Size	Z	Z/E	Delta(Z/E)/Delta(E)
1	0.42	0.420	
2	0.60	0.300	-0.120
3	0.76	0.253	-0.047
4	0.89	0.223	-0.031
5	1.00	0.200	-0.022

 f_3 does <u>not</u> satisfy the third requirement.

Size	Z	Z/E	Delta(Z/E)/Delta(E)
1	0.04	0.040	
2	0.16	0.080	0.040
3	0.36	0.120	0.040
4	0.64	0.160	0.040
5	1.00	0.200	0.040

Under f₂ for example:

Expected Losses	<u>Z_</u>	Actual Losses	Experience Modification
100,000	0.42	100,000	(0.42)(100/100) + (1 - 0.42) = 1.00.
100,000	0.42	150,000	(0.42)(150/100) + (1 - 0.42) = 1.21.
200,000	0.60	100,000	(0.60)(100/200) + (1 - 0.60) = 0.70.
200,000	0.60	150,000	(0.60)(150/200) + (1 - 0.60) = 0.85.

An extra \$50,000 in reported losses increases the experience modification by 0.21 for the smaller risk and 0.15 for the larger risk, satisfying the third requirement.

P. 809, line 1: C = $r_G + \phi(r_G) - \{r_H + \phi(r_H)\}$

P. 869: The contribution from the Exponential for the mixed distribution to the layer from **1** to **2** is: (0.95)(0.8)(28.650% - 8.208%) = 0.1554.

The mixed distribution has losses in the layer from 1 to 2 of:

(0.96)(39.098% - 19.705%) = 0.1862 = 0.0308 + 0.1554.

P. 889: V follows a Pareto Distribution, with $F(v) = 1 - \{10/(v + 10)\}^4$.

p. 1298, sol. 21.7: The average claim cost for Hazard Group for Minor P.P. plus T.T. is 8140 rather than 7955. Therefore, Minor/T.T. Entry Ratio: 500,000/8140 = 61.425.

p. 1316: Then the estimate of W for this class is:

0.7% + (0.02)(1% - 0.5%) + (0.04)(2% - 0.7%) + (0.07)(10% - 9%) + (0.03)(30% - 35%)= **0.682%**.

For permanent total, the estimated relativity of this class to the hazard group is:

0.682% / 0.7% = 0.974.

Thus if for example for this class the frequency of Temporary Total Claims were estimated as 50 per \$100 million of payroll, then for this class the estimated frequency of Permanent Totals is: (0.682%)(50) = 0.341 per \$100 million of payroll.

P. 1446, Sol . 23.21: $\lambda / (1 - e^{-\lambda}) = 0.0952 / (1 - e^{-0.0952}) = 1.0484$. Final solution is OK.

P. 1487: Rosenberg's Example B: Anti-selection does not affect increased limits factors Average Indemnity severity resulting from purchasers of:

at cutoffs of	Policy Limit \$50,000	Policy Limit \$100,000
\$ 25,000	\$ 5,000	\$ 6 ,000

P. 1623, sol. 24.101: The actual CV is 4. We mistakenly use a CV of 5. Using a CV of 5, we **overestimate** the p.p.; the error is: \$2600 - \$2130 = **\$470**.

P. 1763, sol. 25.4: Statements #2 and #3 are true.

P. 1835: The exposure factor for the reinsured layer is: 1.00 - 0.66 = 0.34. In other words, for an insured value of \$175,000, the reinsurer will pay 34% of expected losses.

P. 1867: For ceded losses between 10% and 30% of subject premium, the average retro

P. 1885, last sentence of 4th paragraph: (110%)(15/40) = **41.25%**.

P. 1886, first exercise: (110%)(**23**/40)(5/12)(\$3 million) = **\$790,625**.

P. 1893, Q. 26.10: Limit should be 173,913 not 179,913

P. 1897, 26.18: change the first direct premium to \$19M rather than \$18M.

P. 1925, sol. 26.6b: If the ALAE is included with treaty

P. 1931, sol. 26.16: fourth line should not have "free" after "for the one full loss

P. 1952, sol. 26.67: These losses are all from one occurrence and total \$4,700,000.

P. 2035, comment to solution 27.47:

Assuming that unlike as specified in the question, at most one event can occur per year, one can compute the <u>occurrence</u> exceedance probability curve, as per Table 2.1 in Grossi and Kunreuther (as corrected in the errata from the CAS.)

<u>Event</u>	<u>Size (\$million)</u>	<u>Probability</u>	Exceedance Probability
1	40	0.0125	0
2	20	0.025	0.0125
3	10	0.05	0.0125 + 0.025 = 0.037 5
4	5	0.1	0.0375 + 0.05 = 0.08 75
	0		0.0875 + 0.1 = 0.18 75

